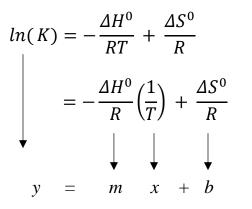

N7 – Gibbs Free Energy

Gibbs free energy, *G* - the maximum amount of work energy that can be released to the surroundings by a system for a constant temp and pressure system.

Gibbs free energy is often called the **chemical potential** because it is similar to the storing of energy in a mechanical system.


Gibbs Mental Math

	At	Any temp	Any temp	Low Temp	High Temp	High Temp	Low Temp
$\Delta H_{sys} - T\Delta S_{sys} = \Delta G_{sys}$	ΔG	ALWAYS spont.	➡ NEVER spont.	■ spont.	➡ NOT spont.	■ spont.	NOT spont.
	ΔS	➡ more disorder	■ less disorder	■ less disorder	 disorder 	➡ more disorder	+ more disorder
	AH	e xothermic	➡ endothermic	● exothermic	■ exothermic	 ➡ endothermic 	+ endothermic

Δ G	K vs Q	
∆G = 0	K = Q	@ equilibrium
∆G < 0	K > Q	Shift right
∆G > 0	K < Q	Shift left

$\begin{aligned} \underline{A \text{ Variety of Helpful Equations}} \\ \Delta S_{univ} &= \Delta S_{sys} + \Delta S_{surr} \\ \Delta S_{surr} &= -\Delta H_{sys} / T \\ -T\Delta S_{univ} &= \Delta H_{sys} - T\Delta S_{sys} \\ -\Delta G_{sys} &= \Delta H_{sys} - T\Delta S_{sys} \\ \Delta G^{0} &= \sum n_{p} \Delta G_{f(\text{products})}^{0} - \sum n_{r} \Delta G_{f(\text{reactants})}^{0} \\ \Delta G^{\circ} &= -RT \ln(K) \\ where R &= 8.314 \text{ J/mol} \bullet K \\ \Delta G &= \Delta G^{\circ} + RT \ln(Q) \\ -RT \ln(K) &= \Delta H^{\circ} - T\Delta S^{\circ} \end{aligned}$

1 st - Graph In(K) vs $\left(\frac{1}{r}\right)$					
2 nd - Find line of best fit (Excel or graphing calculator)					
3rd - Slope = $-\frac{\Delta H^{\circ}}{R}$ Intercept = $\frac{\Delta S^{\circ}}{R}$					

N7 – Gibbs Free Energy – still...sorry...not sorry

 \odot

Practice Problems

#1 - For the following Rx: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ Calculate the standard Free Energy, ΔG° for the rxn at 25°C. $\Delta H^{\circ}= -264$ kJ/mol $\Delta S^{\circ}= -278$ J/mol•K

#2 - Calculate the Boiling Point of BCl₃. BCl_{3(l) \leftrightarrow BCl_{3(g).} Given:}

	H _f kJ/mol	S J/mol k
BCl ₃ (/)	-418	209
BCl ₃ (g)	-395	290

#3 - Under standard conditions (1 atm of NH₃, N₂ and H₂) and at 298 K, what substance(s) will be formed? (Δ G° = 33.4 kJ) 2 NH₃(g) → N₂(g) + 3 H₂(g)

#4 - Calculate the equilibrium constant for this reaction at 298 K. 2 NH₃(g) → N₂(g) + 3 H₂(g) (Δ G° = 33.4 kJ)